Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
During plate convergence, shallow subduction or underthrusting of the lower-plate lithosphere beneath an overriding plate often results in far-field intraplate deformation, as observed in the Late Cretaceous–Paleogene North American Laramide or Cenozoic Himalayan-Tibetan orogen. Perplexingly, during this shallow-slab process, wide expanses of crust between the plate boundary and intraplate orogen do not experience significant synchronous deformation. These apparently undeformed crustal regions may reflect (1) a strong, rigid plate, (2) increased gravitational potential energy (GPE) to resist shortening and uplift, or (3) decoupling of the upper-plate lithosphere from any basal tractions. Here we review the geology of three orogens that formed due to flat slab subduction or underthrusting: the Himalayan-Tibetan, Mesozoic southeast China, and Laramide orogens. These orogens all involved intraplate deformation >1000-km from the plate boundary, large regions of negligible crustal shortening between the plate-boundary and intra-plate thrust belts, hot crustal conditions within the hinterland regions, and extensive upper-plate porphyry copper mineralization. A hot and weak hinterland is inconsistent with it persisting as an undeformed rigid block. GPE analysis suggests that hinterland quiescence is not uniquely due to thickened crust and elevated GPE, as exemplified by shallow marine sedimentation with low surface elevations in SE China. Comparison of these intracontinental orogens allows us to advance a general model, where hot orogenic hinterlands with a weak, mobile lower crust allow decoupling from underlying basal tractions exerted from flat-slab or underthrusting events. This hypothesis suggests that basal tractions locally drive intraplate orogens, at least partially controlled by the strength of the upper-plate lithosphere.more » « lessFree, publicly-accessible full text available January 1, 2027
-
There is a variety of published sample preparation and data acquisition techniques for Raman spectroscopy of carbonaceous material (RSCM) thermometry, which complicates systematic evaluation, assessment, and comparison of RSCM thermometry datasets. In particular, many modern studies are applying large-n RSCM analyses, acquiring high numbers of RSCM temperature estimates, often systematically distributed along transects, to quantify regional thermal structure or spatial temperature gradients associated with geologic structures. Given the significance of RSCM analyses to address numerous geologic questions in a variety of tectonic settings, it becomes imperative to develop a reproducible, standardized, and optimized workflow for RSCM analyses. Here, we introduce and test protocols for RSCM analyses using samples from the Papoose Flat pluton contact aureole, eastern California, western United States, to determine the reproducibility of automated peak-fitting and RSCM temperature estimation programs. Our RSCM results align with previously estimated temperatures derived from calcite-dolomite isotope exchange thermometry, phase equilibria temperature estimates, and quartz c-axis fabric opening-angle thermometry. Temperature estimates derived from two automated peak-fitting programs (i.e., Iterative Fitting of Raman Spectra software [IFORS] and AutoRaman_K2024) are comparable within analytical error. The RSCM temperature estimates were further validated with simple thermal modeling of pluton heat diffusion. Based on these data, we tested sample preparation and data acquisition parameters to optimize large-n workflows. Coupling large datasets at multiple structural levels with supplementary thermal models of varying complexity allows RSCM thermometry to serve as a robust method for tectonic studies.more » « lessFree, publicly-accessible full text available December 4, 2026
-
Tectonic plate convergence is accommodated across the continental lithosphere via discrete lithospheric subduction or distributed shortening and thickening. These end-member deformation modes control intra-plate mountain building, but their selection mechanism remains unclear. The variable composition of the continental crust and lithospheric mantle, which impacts its density and rheology, can be inferred by the distribution of magnetic-indicated crustal iron. Here we demonstrate that vertically coherent pure-shear shortening dominated the active Tian Shan orogen, central Asia, based on high-resolution aeromagnetic imaging and geophysical-geodetic observations. Integrating these findings with thermomechanical collisional models reveals that the mode of intracontinental deformation depends on contrasts in lower crust composition and mantle lithosphere depletion between the converging continents and central orogenic region. Distributed shortening prevails when the converging continents have a more iron-enriched mafic crust and iron-depleted mantle lithosphere when compared to the intervening orogenic region. Conversely, continental subduction occurs without such lithospheric contrasts. This result explains how the Tian Shan orogen formed via distributed lithospheric thickening without continental subduction or underthrusting. Our interpretations imply that iron distribution in the crust correlates with lithospheric compositional, density, and rheological structure, which impacts the preservation and destruction of Earth’s continents, including long-lived cratons, during intracontinental orogeny.more » « lessFree, publicly-accessible full text available December 1, 2026
-
The Late Cretaceous to Paleogene Laramide orogen in the North American Cordillera involved deformation >1,000 km from the plate margin that has been attributed to either plate-boundary end loading or basal traction exerted on the upper plate from the subducted Farallon flat slab. Prevailing tectonic models fail to explain the relative absence of Laramide-aged (ca. 90–60 Ma) contractional deformation within the Cordillera hinterland. Based on Raman spectroscopy of carbonaceous material thermometry and literature data from the restored upper 15–20 km of the Cordilleran crust we reconstruct the Late Cretaceous thermal architecture of the hinterland. Interpolation of compiled temperature data (n = 200) through a vertical crustal column reveals that the hinterland experienced a continuous but regionally elevated, upper-crustal geothermal gradient of >40 °C/km during Laramide orogenesis, consistent with peak metamorphic conditions and synchronous peraluminous granitic plutonism. The hot and partially melted hinterland promoted lower crust mobility and crust-mantle decoupling during flat-slab traction.more » « less
-
Theory suggests the possibility for significant deviations between total pressure (or dynamic pressure) and lithostatic pressure during crustal metamorphism. If such deviations exist, the implications for orogenic reconstruction would be profound. Whether such non-lithostatic pressure conditions during crustal metamorphism are recorded and preserved in the rock record remains unresolved, as direct field evidence for this phenomenon is limited. Here, we investigate the Paleogene Tethyan Himalaya fold-thrust belt in Himachal Pradesh, northwestern India, which is the structurally highest part of the Himalayan orogen and deforms a ~10–15 km thick Neoproterozoic–Cretaceous passive margin stratigraphic section. Field-based kinematic studies demonstrate relatively moderate shortening strain across the Tethyan Himalaya. However, basal Tethyan strata consistently yield elevated pressure-temperature-time (P-T-t) estimates of 7–8 kbar and ~650°C, indicative of deep burial during Himalayan orogeny (ca. 20–45 Ma, 25–30 km depths). These P-T-t conditions can be reconciled by: (1) deep Cenozoic burial along cryptic structures and/or significant flattening of the Tethyan strata; (2) basal Tethyan strata recording metamorphism and deformation related to pre-Himalayan tectonism; or (3) non-lithostatic pressure conditions (i.e., tectonic overpressure). To test these models, we systematically mapped the Tethyan fold-thrust belt along the Pin Valley transect in northwestern India, a classic site for stratigraphic, paleontological, paleoenvironmental, and structural reconstructions. The Pin Valley region provides an opportunity to study a structurally continuous metamorphic field gradient from the near-surface to structural depths between 10–15 km, which should reflect P conditions ≤4 kbar if lithostatic. We integrate a multi-method approach combining detailed geologic mapping with quantitative analytical techniques (e.g., thermometry, finite strain analyses, thermo/geochronology, and thermobarometry) to quantify the magnitude, kinematics, thermal architecture, and timing of regional deformation, metamorphism, and subsequent exhumation. Results show: (1) throw on shortening structures is moderate to low (≤4 km); (2) temperature-depth relationships record a continuous, but regionally elevated, upper-crustal geothermal gradient of ≥40 °C/km, which is inconsistent with deep burial models (≤25 °C/km); (3) minimal flattening of basal Tethyan strata; (4) upper Tethyan strata yield pre-Himalayan low-temperature thermochronology dates, further refuting deep Cenozoic burial; and (5) basal Tethyan P-T-t estimates confirm elevated mid-crustal conditions of ~7 kbar, 630°C at 10–15 km depths during the Cenozoic. Preliminary volume expansion calculations are minimal; therefore, mechanisms involving non-hydrostatic thermodynamics, deviatoric stresses, rock strength contrasts, and tectonic mode switching are being explored.more » « lessFree, publicly-accessible full text available March 18, 2026
-
The growth and evolution of the Eurasian continent involved the progressive closure of major ocean basins during the Phanerozoic, including the Tethyan and Paleo-Asian oceanic realms. Unraveling this complicated history requires interpreting multiple overprinted episodes of subduction-related magmatism and collisional orogeny, the products of which were later affected by the Cenozoic construction of the Himalayan-Tibetan orogen due to the India-Asia collision. In particular, the tectonic evolution of northern Tibet surrounding the Cenozoic Qaidam Basin is poorly resolved due to several phases of Phanerozoic orogeny that have been reactivated during the Cenozoic deformation. In this study, we investigated the geology of the northern Qaidam continent, which experienced Paleozoic–Mesozoic tectonic activity associated with the development of the Eastern Kunlun orogen to the south and the Qilian orogen to the north. We combined new and published field observations, geochronologic and thermochronologic ages, and geochemical data to construct regional tectonostratigraphic sections and bracket phases of Paleozoic–Mesozoic magmatism associated with oceanic subduction and continental collision. Results suggest that the Qaidam continent experienced two major phases of subduction magmatism and collision. First, a Cambrian–Ordovician magmatic arc developed in the northern Qaidam continent due to south-dipping subduction. This phase was followed by the closure of the Qilian Ocean and the collision of the North China craton and Qaidam continent, resulting in Silurian–Devonian orogeny and the development of a regional unconformity across northern Tibet. A subsequent Permian–Triassic magmatic arc developed across the northern Qaidam continent due to north-dipping subduction. This phase was followed by the closure of the Neo-Kunlun Ocean and the collision of the Songpan Ganzi terrane in the south and Qaidam continent. These interpretations are incorporated into a new and comprehensive model for the Phanerozoic formation of northern Tibet and the Eurasia continent.more » « less
-
The closure of an ancient ocean basin via oceanic arc‐continent collision has two subduction styles with opposite polarities, which may proceed via subduction polarity reversal (SPR) or a subduction zone jump (SZJ). Interpreting the geometry or kinematic evolution of ancient collisional zones, especially the original subduction polarity, can be challenging. Here we used 2D thermo‐mechanical modeling to investigate the dynamic evolution process of SPR versus SZJ. Our modeling predicts different structural, topographic, magmatic, and basin histories for SPR and SZJ, which can be compared against, and help interpret, the geologic record past sites of oceanic closure during collisional orogens. Our results match geologic observations of past collisions in Kamchatka, eastern Russia, and the Banda Arc, eastern Indonesia, and thus our results can help effectively decode the evolutionary history of past arc‐continent collisions.more » « less
An official website of the United States government
